
Week 10

3.7 Non-linear Diophantine Equations

As an example of the use of congruences we can use them to show when some
Diophantine equations do not have integer solutions. This is quite a negative
application - we do not prove that the equations have solutions.

Idea 1) Given a Diophantine Equation first assume it has integer solutions.

2) Then look at the equation modulo an appropriate modulus.

3) Find a contradiction.

Example 3.7.1 Not given Show there are no integer solutions to 166361x+
4043y = 25.

Solution Assume the equation has integer solution. Look at the equation
modulo 13. Both 166361 and 4043 are divisible by 13 (as seen in previous
Chapter) and so the left hand side of the equation is ≡ 0mod 13. But the
right hand side is 25 ≡ 12mod 13. Thus the equation becomes 0 ≡ 12mod 13,
a contradiction. �

We actually proved this result in the previous Chapter. The hardest past
of this method in general is choosing the appropriate modulus.

Example 3.7.2 (c.f. PJE problem 19.2.6, p.236) Prove that there are no

integral solutions to
15x2 − 7y2 = 1.

Solution Assume there is a solution (x0, y0) ∈ Z2, so 15x2

0
− 7y2

0
= 1.

Look at the equation modulo 7, to get

15x2

0
≡ 1mod 7 or x2

0
≡ 1mod 7.

Unfortunately there is a solution to this, namely x0 = 1. Thus we have
not found a contradiction. This does not mean that there is anything wrong
with the method, just that this modulus has not led to a contradiction. We
must look at another modulus.

Alternatively, look at the equation modulo 5 to get

−7y2
0
≡ 1mod 5 or 3y2

0
≡ 1mod 5.

Multiplying both sides by 2 we get

6y2
0
≡ 2mod 5 i.e. y2

0
≡ 2mod 5.
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We see if this is possible or not by testing each possible value for y.

ymod 5 y2 mod 5

0 0

1 1

2 4

3 4

4 1

In no case do we get y2 ≡ 2mod 5, there being no 2 in the right hand
column. So our assumption that 15x2 − 7y2 = 1 has a solution has led
to a contradiction modulo 5. Hence the original equation has no integer
solutions. �

Alternative Solution We could have looked at the equation modulo 3,
to get −7y2

0
≡ 1mod 3 or 2y2

0
≡ 1mod 3. multiply both sides by 2 to get

4y2
0
≡ 2mod 3, i.e. y2

0
≡ 2mod 3. We see if this is possible or not by testing

each possible value for y.

ymod 3 y2 mod 3

0 0

1 1

2 1

In no case do we get y2 ≡ 2mod 3. So our assumption that 15x2−7y2 = 1 has
a solution has led to a contradiction modulo 3. Hence the original equation
has no integer solutions. �

The lesson from this is that the smaller you take the modulus the smaller
the table, i.e. the less work you have to do.

Example 3.7.3 (MATH10101 Exam 2009) Show that for any n ≡ 1mod 7
no integers a, b can be found satisfying

n = 2a3 − 5b3.

Solution The information concerning n is given modulo 7 so we look at the
Diophantine equation modulo 7, and try to find integer solutions of

2a3 − 5b3 ≡ 1mod 7.
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This we do by searching all possible values of (a3, b3)mod 7.

amod 7 a3 mod 7

0 0

1 1

2 1

3 6

4 1

5 6

6 6

Hence a3 takes only 3 different values, modulo 7, i.e.

a3 ≡ 0, 1 or 6mod 7.

Thus there are only 9 different possibilities for the pair (a3, b3)mod 7.

a3 mod 7 b3 mod 7 2a3 − 5b3 mod 7

0 0 0

0 1 −5 ≡ 2

0 6 −30 ≡ 5

1 0 2

1 1 −3 ≡ 4

1 6 −28 ≡ 0

6 0 12 ≡ 5

6 1 7 ≡ 0

6 6 −18 ≡ 3.

In no row do we see a final result of 1, hence 2a3 − 5b3 is never ≡ 1mod 7,
hence no n ≡ 1mod 7 can be written as 2a3 − 5b3 for integers a and b. �

Question how do we find the appropriate modulus?

Answer There is no method for finding the right modulus, we have to look
at the original equation with different moduli, trying to find a case that has
no solutions. If, for all moduli we choose, the resulting congruence has a
solution there is a chance that the original equation has solutions, but if so
these have to be found by other means.
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Other examples Students may wish to try:

Example (MATH10111 exam 2007)

Show that 7x4 + 2y3 = 3 has no integer solutions.

Show that 5 does not divide a3 + a2 + 1 for any a ∈ Z.

Example (MATH10111 exam 2008).

Show that 2x3 + 27y4 = 21 has no integer solutions.

Example (MATH10111 exam 2009)

Show that 7x5 + 3y4 = 2 has no integer solutions.
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4 Congruence Classes

4.1 Definition

Definition 4.1.1 (p.251) The congruence class modm of a ∈ Z is the
set of integers congruent to amodm,

[a]
m
= {b ∈ Z : b ≡ amodm} .

Example 4.1.2 With m = 3 we have

[0]
3

= {..,−6,−3, 0, 3, 6, ...} ,

[1]
3

= {..,−5,−2, 1, 4, 7, ...} ,

[2]
3

= {..,−4,−1, 2, 5, 8, ...} .

Recall that congruences are “reflexive”, so a ≡ amodm and thus a ∈ [a]
m

for all a ∈ Z.

Note that in the example above all the integers appear in these classes, and
these classes are disjoint. We could go on, for instance

[−5]
3
= {...− 11,−8,−5,−3, 1, ...} .

But this is not disjoint with [1]
3
, and in fact it equals [1]

3
. In general we have

the fundamental result

Theorem 4.1.3 For integers a, b,

i) If a ≡ b (modm) then [a]
m
= [b]

m
,

ii) If a 6≡ b (modm) then [a]
m
∩ [b]

m
= ∅.

Since we have exactly one of a ≡ b (modm) or a 6≡ b (modm) we deduce
that either two classes are identical or disjoint.

Proof i) Assume a ≡ b (modm) . To show that [a]
m

= [b]
m

we need show
that [a]

m
⊆ [b]

m
and [b]

m
⊆ [a]

m
.

To show [a]
m

⊆ [b]
m

let k ∈ [a]
m
. By definition this means that k ≡

amodm. Combine this with a ≡ b (modm) using transitivity to deduce
k ≡ bmodm. By definition this means k ∈ [b]

m
. Since this is true for all

k ∈ [a]
m
it means that [a]

m
⊆ [b]

m
.

To show [b]
m

⊆ [a]
m

let ℓ ∈ [b]
m
. By definition this means that ℓ ≡

bmodm. Use symmetry on the present assumption of a ≡ b (modm) to get
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b ≡ a (modm). Use transitivity to get ℓ ≡ amodm, which means ℓ ∈ [a]
m
.

Since this is true for all ℓ ∈ [b]
m
it means that [b]

m
⊆ [a]

m
.

Combine the two set inclusions to get [a]
m
= [b]

m
.

ii) Assume a 6≡ b (modm). Assume for a contradiction that [a]
m
∩ [b]

m
6= ∅.

Thus we can choose c ∈ [a]
m
∩ [b]

m
. From this we have c ∈ [a]

m
and

c ∈ [b]
m
, i.e. c ≡ amodm and c ≡ bmodm. Symmetry on c ≡ amodm

gives a ≡ cmodm which combines by transitivity with c ≡ bmodm to get
a ≡ bmodm. This contradicts the assumption a 6≡ b (modm) so the last
assumption above is false and thus [a]

m
∩ [b]

m
= ∅. �

Part (i) of this result shows that a class can be labeled with any element
from within it. So in the example above with m = 3, we have

[0]
3
= [3]

3
= [6]

3
= ... = [−9]

3
= ....

In general, by the Division Theorem, every n ∈ Z can be written as n =
qm + r for some 0 ≤ r ≤ m − 1, the reduced residue mod m. We often use
the reduced residue to label the class, i.e. [r]

m
, in place of [n]

m
.

Further, if 0 ≤ r1 < r2 ≤ m − 1 then 1 ≤ r2 − r1 ≤ m − 1 and so
m ∤ (r2 − r1), i.e. r2 6≡ r1 (modm). By part ii of the Theorem above this
means that [r2]m and [r1]m are disjoint.

Hence in the set {[r]
m
: 0 ≤ r ≤ m− 1} we see each congruence class once,

and only once.

Definition 4.1.4 We write Zm for the set of congruence classes modm.

Example 4.1.5

Z3 = {[0]
3
, [1]

3
, [2]

3
} .

But we could equally have written

Z3 = {[3]
3
, [7]

3
, [11]

3
}

since [3]
3
= [0]

3
, [7]

3
= [1]

3
and [11]

3
= [2]

3
.

To be consistent we label each class with the least non-negative remainder,
so

Zm = {[r]
m
: 0 ≤ r ≤ m− 1} .

Example 4.1.6 Z5 = {[0]
5
, [1]

5
, [2]

5
, [3]

5
, [4]

5
} .
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Since we can add and multiply elements of Z we can define addition and
multiplication on Zm.

Definition 4.1.7 For a, b ∈ Z define

[a]
m
+ [b]

m
= [a+ b]

m
, (1)

and
[a]

m
× [b]

m
= [a× b]

m
. (2)

Example 4.1.8

[7]
10
+ [8]

10
= [15]

10
= [5]

10

and
[7]

10
× [8]

10
= [56]

10
= [6]

10
.

This definition of addition and multiplication on Zm might seem to de-
pend on the choice of labels for the classes. The next result shows this is
not the case. The following result is, in fact, simply a reinterpretation of the
earlier Theorem on Modular Arithmetic.

Theorem 4.1.9 Addition and multiplication on Zm are “well-defined”.

If [a]
m
= [a′]

m
and [b]

m
= [b′]

m
then

[a]
m
+ [b]

m
= [a′]

m
+ [b′]

m

and [a]
m
× [b]

m
= [a′]

m
× [b′]

m
.

Thus it does not matter what label we choose for a class.

Proof p.256. Since different labels for the same congruence class modm are
congruent modm we have

[a]
m

= [a′]
m
⇒ a ≡ a′ modm

[b]
m

= [b′]
m
⇒ b ≡ b′ modm.

The earlier Theorem on Modular Arithmetic implies a+b ≡ a′+b′ modm
which in turn implies [a+ b]

m
= [a′ + b′]

m
. Then

[a]
m
+ [b]

m
= [a+ b]

m
by (1)

= [a′ + b′]
m

= [a′]
m
+ [b′]

m
again by (1) .
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Similarly, Modular Arithmetic implies a×b ≡ a′×b′ modm which in turn
implies [a× b]

m
= [a′ × b′]

m
. Then

[a]
m
× [b]

m
= [a× b]

m
by (2)

= [a′ × b′]
m

= [a′]
m
× [b′]

m
again by (2) .

�

If we express the result of addition or multiplication as a class [r]
m

with
label 0 ≤ r ≤ m−1 we can write all results in a multiplication table (even
if the operation is addition!).

Examples (Z4,+)

+ [0]
4

[1]
4

[2]
4

[3]
4

[0]
4

[0]
4

[1]
4

[2]
4

[3]
4

[1]
4

[1]
4

[2]
4

[3]
4

[0]
4

[2]
4

[2]
4

[3]
4

[0]
4

[1]
4

[3]
4

[3]
4

[0]
4

[1]
4

[2]
4

(Z4,×)

× [0]
4

[1]
4

[2]
4

[3]
4

[0]
4

[0]
4

[0]
4

[0]
4

[0]
4

[1]
4

[0]
4

[1]
4

[2]
4

[3]
4

[2]
4

[0]
4

[2]
4

[0]
4

[2]
4

[3]
4

[0]
4

[3]
4

[2]
4

[1]
4

Aside In this table we see something never seen in (Z,×), namely that we
can multiply two non-zero objects and get zero! For example [2]

4
×[2]

4
= [0]

4
.

Here, [2]
4
is an example of divisors of zero.
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(Z8,×) Not given in the lectures because of size

× [0]
8

[1]
8

[2]
8

[3]
8

[4]
8

[5]
8

[6]
8

[7]
8

[0]
8

[0]
8

[0]
8

[0]
8

[0]
8

[0]
8

[0]
8

[0]
8

[0]
8

[1]
8

[0]
8

[1]
8

[2]
8

[3]
8

[4]
8

[5]
8

[6]
8

[7]
8

[2]
8

[0]
8

[2]
8

[4]
8

[6]
8

[0]
8

[2]
8

[4]
8

[6]
8

[3]
8

[0]
8

[3]
8

[6]
8

[1]
8

[4]
8

[7]
8

[2]
8

[5]
8

[4]
8

[0]
8

[4]
8

[0]
8

[4]
8

[0]
8

[4]
8

[0]
8

[4]
8

[5]
8

[0]
8

[5]
8

[2]
8

[7]
8

[4]
8

[1]
8

[6]
8

[3]
8

[6]
8

[0]
8

[6]
8

[4]
8

[2]
8

[0]
8

[6]
8

[4]
8

[2]
8

[7]
8

[0]
8

[7]
8

[6]
8

[5]
8

[4]
8

[3]
8

[2]
8

[1]
8

Again we have divisors of zero, i.e. [4]
8
and [6]

8
.

Notation If, in a problem, we are working throughout with one modulus m
we often drop the [..]

m
and write simply r in place of [r]

m
. See section 21.3

of PJE for a discussion of the map [r]
m
7−→ r. If we want to be reminded of

the modulus we often write r1 +m r2 and r1 ×m r2 in place of [r1]m + [r2]m
and [r1]m × [r2]m respectively.

Example 4.1.10 We have not given the table for (Z8,×) because it is too
large. But consider the subset {[0]

8
, [2]

8
, [4]

8
, [6]

8
} ⊆ Z8. The multiplication

table modulo 8 for this subset is

× [0]
8

[2]
8

[4]
8

[6]
8

[0]
8

[0]
8

[0]
8

[0]
8

[0]
8

[2]
8

[0]
8

[4]
8

[0]
8

[4]
8

[4]
8

[0]
8

[0]
8

[0]
8

[0]
8

[6]
8

[0]
8

[4]
8

[0]
8

[4]
8

We can fill in this table using the elements from the set {[0]
8
, [2]

8
, [4]

8
, [6]

8
}

because the product of two even integers is even.
We say that the set {[0]

8
, [2]

8
, [4]

8
, [6]

8
} is closed under multiplication

modulo 8.

Example 4.1.11 The set {[2]
8
, [4]

8
, [6]

8
} is not closed under multiplication

modulo 8. For example, [2]
8
× [4]

8
= [0]

8
which is not in the set. That is, we
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cannot complete the table

× [2]
8

[4]
8

[6]
8

[2]
8

[4]
8

? [4]
8

[4]
8

? ? ?

[6]
8

[4]
8

? [4]
8

Example 4.1.12 The set {[2]
10
, [4]

10
, [6]

10
, [8]

10
} is a closed subset of (Z10,×) .

Verification
× [2]

10
[4]

10
[6]

10
[8]

10

[2]
10

[4]
10

[8]
10

[2]
10

[6]
10

[4]
10

[8]
10

[6]
10

[4]
10

[2]
10

[6]
10

[2]
10

[4]
10

[6]
10

[8]
10

[8]
10

[6]
10

[2]
10

[8]
10

[4]
10

As soon as we have operations such as addition and multiplication we
have equations with unknowns.

Theorem 4.1.13 The equation

[a]
m
× [x]

m
= [c]

m

has a solution in Zm if, and only if gcd (a,m) |c.

Proof Recall from the theory of linear Diophantine equations with two un-
knowns that

gcd (a,m) |c ⇔ ax+my = c has solutions with x, y ∈ Z

⇔ ax ≡ cmodm has solutions with x ∈ Z

⇔ [ax]
m
= [c]

m
has solutions with x ∈ Z

⇔ [a]
m
[x]

m
= [c]

m
has solutions with [x]

m
∈ Zm.

�

Definition 4.1.14 • An element [a]
m

of Zm is an invertible element

if there exists [a′]
m

such that

[a]
m
[a′]

m
= [1]

m
.
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• We say that [a′]
m

is the inverse of [a]
m

and write [a′]
m
= [a]−1

m
.

• We write Z∗

m
for the set of invertible elements in Zm.

Example In the last Chapter we found that 53 had inverse 5 modulo 93.

Thus [53]
93

∈ Z93 is invertible with inverse [5]
93
, i.e. [53]−1

93
= [5]

93
. Hence

[53]
93

∈ Z∗

93
. Similarly [5]

93
∈ Z∗

93
.

Question What does Z∗

m
look like?

Theorem 4.1.15 [a]
m

is invertible if, and only if, gcd (a,m) = 1.

Proof The class [a]
m
is invertible iff [a]

m
[x]

m
= [1]

m
is soluble which, by the

Theorem above, is soluble iff gcd (a,m) |1 iff gcd (a,m) = 1 iff a and m are
coprime. �

So we can write

Z∗

m
= {[r]

m
: 1 ≤ r ≤ m, gcd (r,m) = 1} .

Note The set Z∗

m
is not discussed in PJE.

Example (i) Z∗

5
= {[1]

5
, [2]

5
, [3]

5
, [4]

5
} and the multiplication table for

(Z∗

5
,×) is

× [1]
5

[2]
5

[3]
5

[4]
5

[1]
5

[1]
5

[2]
5

[3]
5

[4]
5

[2]
5

[2]
5

[4]
5

[1]
5

[3]
5

[3]
5

[3]
5

[1]
5

[4]
5

[2]
5

[4]
5

[4]
5

[3]
5

[2]
5

[1]
5

It is easy to read off inverses from a table, so

[1]−1

5
= [1]

5
, [2]−1

5
= [3]

5
, [3]−1

5
= [2]

5
and [4]−1

5
= [4]

5
.

(ii) Z∗

8
= {[1]

8
, [3]

8
, [5]

8
, [7]

8
} and the multiplication table for (Z∗

8
,×) is

× [1]
8

[3]
8

[5]
8

[7]
8

[1]
8

[1]
8

[3]
8

[5]
8

[7]
8

[3]
8

[3]
8

[1]
8

[7]
8

[5]
8

[5]
8

[5]
8

[7]
8

[1]
8

[3]
8

[7]
8

[7]
8

[5]
8

[3]
8

[1]
8
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This time we see that every element is a self inverse. So in some funda-

mental way the tables for (Z∗

8
,×) and (Z∗

5
,×) are different.

Aside What of the tables for (Z∗

5
,×) and (Z4,+), written as

× [1]
5

[2]
5

[3]
5

[4]
5

[1]
5

[1]
5

[2]
5

[3]
5

[4]
5

[2]
5

[2]
5

[4]
5

[1]
5

[3]
5

[3]
5

[3]
5

[1]
5

[4]
5

[2]
5

[4]
5

[4]
5

[3]
5

[2]
5

[1]
5

and

+ [0]
4

[1]
4

[3]
4

[2]
4

[0]
4

[0]
4

[1]
4

[3]
4

[2]
4

[1]
4

[1]
4

[2]
4

[0]
4

[3]
4

[3]
4

[3]
4

[0]
4

[2]
4

[1]
4

[2]
4

[2]
4

[3]
4

[1]
4

[0]
4

do they not have the same “form”? As an advert for future courses on
Algebraic Structures, they look at different algebraic structures on sets, at-
tempting to answer difficult questions such as how many are there on a given
set and how to recognise if two given structures are the same or different.
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Theorem 4.1.16 For all m ∈ N, (Z∗

m
,×) is a closed subset of (Zm,×) .

Proof Let [a]
m

and [b]
m

∈ Z∗

m
. This means they have inverses, i.e. there

exist [a]−1

m
and [b]−1

m
∈ Z∗

m
for which [a]

m
[a]−1

m
= [1]

m
and [b]

m
[b]−1

m
= [1]

m
.

Consider

([a]
m
[b]

m
)
(

[b]−1

m
[a]−1

m

)

= [a]
m

(

[b]
m
[b]−1

m

)

[a]−1

m

= [a]
m
[1]

m
[a]−1

m

= [a]
m
[a]−1

m
= [1]

m
.

Thus [a]
m
[b]

m
has an inverse [b]−1

m
[a]−1

m
, and is therefore invertible. Hence

[a]
m
[b]

m
∈ Z∗

m
. �

Aside As another observation we see that in {[2]
10
, [4]

10
, [6]

10
, [8]

10
,×},

(Z∗

8
,×) and (Z∗

5
,×) we have the nice property that in every row and every

column every element occurs once and only once. This property was not seen
in (Z8,×) nor ({[0]

8
, [2]

8
, [4]

8
, [6]

8
} ,×8) .

Finally, from Chapter 4 we have as part of a Theorem: If gcd (a,m) = 1
then

ab1 ≡ ab2 modm if, and only if, b1 ≡ b2 modm.

In terms of congruence classes this becomes

Cancellation Law in Z∗

m
. For [a]

m
, [b1]m , [b2]m ∈ Z∗

m
, if

[a]
m
[b1]m = [a]

m
[b2]m

then [b1]m = [b2]m .
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